Site-directed immobilization of antibody using EDC-NHS-activated protein A on a bimetallic-based surface plasmon resonance chip

The characteristics of a waveguide-coupled bimetallic surface plasmon resonance (WcBiM SPR) sensor using (3-dimethylaminopropyl)-3-ethylcarbodiimide(EDC)-N-hydroxysuccinimide(NHS)-activated protein A was investigated, and the detection of IgG using the EDC-NHS-activated protein A was studied in comparison with protein A and a self-assembled monolayer (SAM). The WcBiM sensor, which has a narrower full width at half maximum (FWHM) and a steeper slope, was selected since it leads to a larger change in the reflectance in the intensity detection mode. A preparation of the EDC-NHS-activated protein A for site-directed immobilization of antibodies was relative easily compared to the engineered protein G and A. In antigen-antibody interactions, the response to IgG at the concentrations of 50, 100, and 150 ng/ml was investigated. The results showed that the sensitivity of the WcBiM sensor using the EDC-NHS-activated protein A, protein A, and SAM was 0.0185 [%/(ng/ml)], 0.0065 [%/(ng/ml)], and 0.0101 [%/(ng/ml)], respectively. The lowest detectable concentrations of IgG with the EDC-NHS-activated protein A, protein A, and SAM were 4.27, 12.83, and 8.24 ng/ml, respectively. Therefore, the increased sensitivity and lower detection capability of the WcBiM SPR chip with the EDC-NHS-activated protein A suggests that it could be used in early diagnosis where the trace level concentrations of biomolecules should be detected.

Similar articles

Lee YK, Jang DH, Lee KS, Kim WM, Sohn YS. Lee YK, et al. Nanoscale Res Lett. 2013 Aug 6;8(1):344. doi: 10.1186/1556-276X-8-344. Nanoscale Res Lett. 2013. PMID: 23914936 Free PMC article.

Lee YK, Lee KS, Kim WM, Sohn YS. Lee YK, et al. PLoS One. 2014 Jun 9;9(6):e98992. doi: 10.1371/journal.pone.0098992. eCollection 2014. PLoS One. 2014. PMID: 24911167 Free PMC article.

Wang Y, Bai Y, Wei X. Wang Y, et al. IET Nanobiotechnol. 2011 Mar;5(1):14-9. doi: 10.1049/iet-nbt.2010.0001. IET Nanobiotechnol. 2011. PMID: 21241157

Makaraviciute A, Ramanaviciene A. Makaraviciute A, et al. Biosens Bioelectron. 2013 Dec 15;50:460-71. doi: 10.1016/j.bios.2013.06.060. Epub 2013 Jul 5. Biosens Bioelectron. 2013. PMID: 23911661 Review.

Dudak FC, Boyaci IH. Dudak FC, et al. Biotechnol J. 2009 Jul;4(7):1003-11. doi: 10.1002/biot.200800316. Biotechnol J. 2009. PMID: 19288516 Review.

Cited by

Saffari Z, Cohan RA, Sepahi M, Sadeqi M, Khoobi M, Fard MH, Ghavidel A, Amiri FB, Aghasadeghi MR, Norouzian D. Saffari Z, et al. Sci Rep. 2023 Dec 9;13(1):21851. doi: 10.1038/s41598-023-48766-2. Sci Rep. 2023. PMID: 38071203 Free PMC article.

Hipwood L, Clegg J, Weekes A, Davern JW, Dargaville TR, Meinert C, Bock N. Hipwood L, et al. Gels. 2022 Dec 12;8(12):821. doi: 10.3390/gels8120821. Gels. 2022. PMID: 36547345 Free PMC article.

Sha Z, Wang C, Ma R, Gao X, Sun S. Sha Z, et al. Mikrochim Acta. 2022 Oct 6;189(11):407. doi: 10.1007/s00604-022-05507-y. Mikrochim Acta. 2022. PMID: 36198915

Drozd M, Karoń S, Malinowska E. Drozd M, et al. Sensors (Basel). 2021 May 29;21(11):3781. doi: 10.3390/s21113781. Sensors (Basel). 2021. PMID: 34072572 Free PMC article. Review.

Chiodi E, Damin F, Sola L, Ferraro L, Brambilla D, Ünlü MS, Chiari M. Chiodi E, et al. Polymers (Basel). 2021 Jan 21;13(3):340. doi: 10.3390/polym13030340. Polymers (Basel). 2021. PMID: 33494542 Free PMC article.